Distinct nucleic acid interaction properties of HIV-1 nucleocapsid protein precursor NCp15 explain reduced viral infectivity

نویسندگان

  • Wei Wang
  • Nada Naiyer
  • Mithun Mitra
  • Jialin Li
  • Mark C. Williams
  • Ioulia Rouzina
  • Robert J. Gorelick
  • Zhengrong Wu
  • Karin Musier-Forsyth
چکیده

During human immunodeficiency virus type 1 (HIV-1) maturation, three different forms of nucleocapsid (NC) protein-NCp15 (p9 + p6), NCp9 (p7 + SP2) and NCp7-appear successively. A mutant virus expressing NCp15 shows greatly reduced infectivity. Mature NCp7 is a chaperone protein that facilitates remodeling of nucleic acids (NAs) during reverse transcription. To understand the strict requirement for NCp15 processing, we compared the chaperone function of the three forms of NC. NCp15 anneals tRNA to the primer-binding site at a similar rate as NCp7, whereas NCp9 is the most efficient annealing protein. Assays to measure NA destabilization show a similar trend. Dynamic light scattering studies reveal that NCp15 forms much smaller aggregates relative to those formed by NCp7 and NCp9. Nuclear magnetic resonance studies suggest that the acidic p6 domain of HIV-1 NCp15 folds back and interacts with the basic zinc fingers. Neutralizing the acidic residues in p6 improves the annealing and aggregation activity of NCp15 to the level of NCp9 and increases the protein-NA aggregate size. Slower NCp15 dissociation kinetics is observed by single-molecule DNA stretching, consistent with the formation of electrostatic inter-protein contacts, which likely contribute to the distinct aggregate morphology, irregular HIV-1 core formation and non-infectious virus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nucleic acid binding and chaperone properties of HIV-1 Gag and nucleocapsid proteins

The Gag polyprotein of HIV-1 is essential for retroviral replication and packaging. The nucleocapsid (NC) protein is the primary region for the interaction of Gag with nucleic acids. In this study, we examine the interactions of Gag and its NC cleavage products (NCp15, NCp9 and NCp7) with nucleic acids using solution and single molecule experiments. The NC cleavage products bound DNA with compa...

متن کامل

Differential contribution of basic residues to HIV-1 nucleocapsid protein’s nucleic acid chaperone function and retroviral replication

The human immunodeficiency virus type 1 (HIV-1) nucleocapsid (NC) protein contains 15 basic residues located throughout its 55-amino acid sequence, as well as one aromatic residue in each of its two CCHC-type zinc finger motifs. NC facilitates nucleic acid (NA) rearrangements via its chaperone activity, but the structural basis for this activity and its consequences in vivo are not completely u...

متن کامل

HIV-1 Protease and Reverse Transcriptase Control the Architecture of Their Nucleocapsid Partner

The HIV-1 nucleocapsid is formed during protease (PR)-directed viral maturation, and is transformed into pre-integration complexes following reverse transcription in the cytoplasm of the infected cell. Here, we report a detailed transmission electron microscopy analysis of the impact of HIV-1 PR and reverse transcriptase (RT) on nucleocapsid plasticity, using in vitro reconstitutions. After bin...

متن کامل

The prion protein has RNA binding and chaperoning properties characteristic of nucleocapsid protein NCP7 of HIV-1.

Transmissible spongiform encephalopathies are fatal neurodegenerative diseases associated with the accumulation of a protease-resistant form of the prion protein (PrP). Although PrP is conserved in vertebrates, its function remains to be identified. In vitro PrP binds large nucleic acids causing the formation of nucleoprotein complexes resembling human immunodeficiency virus type 1 (HIV-1) nucl...

متن کامل

Effects of human immunodeficiency virus type 1 transframe protein p6* mutations on viral protease-mediated Gag processing.

The proteolytic processing of human immunodeficiency virus (HIV) particles mediated by the viral pol-encoded protease (PR) is essential for viral infectivity. The pol coding sequence partially overlaps with the gag coding sequence and is translated as a Gag-Pol polyprotein precursor. Within Gag-Pol, the C-terminal p6(gag) domain is replaced by a transframe peptide referred to as p6*, which sepa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2014